"Structural and Optical Studies on Phosphorous doped TiO² nanoparticles"

Sandip B. Deshmukh^{a*}, Dhananjay V. Mane^b, Mangesh G. Bhosale^a, <mark>Maheshkumar L. Mane^c,</mark> Jalindar D. Ambekar^d

- *a. Department of Chemistry, Ramkrishna Paramhansa Mahavidyalaya, Osmanabad. 413 501, Maharashtra, India.*
- *b. Department of Chemistry, Shri Chhatrapati Shivaji Mahavidyalaya, Omerga 413 606, Maharashtra, India.*
- *c. Department of Physics, Shikshan Maharshi Guruvarya R. G. Shinde Mahavidyalaya, Paranda 413 502, Maharashtra, India.*
- *d. Centre for Materials for Electronics Technology (C-MET), Pune 411 008, Maharashtra, India.*

**Corresponding author*

Abstract

The pure anatase phase tetragonal structured Phophorous doped $TiO₂$ nanoparticles were successfully synthesized at room temperature by using simple sol–gel method. The structural, optical properties of the materials are investigated thoroughly by various spectral techniques (XRD, EDAX, FT-IR, and UV-DRS) and electron microscopy (FESEM and HRTEM). The experimental results suggest that, the P doped $TiO₂$ influenced the structural, morphological, and optical properties significantly. UV-DRS studies investigate that the doping of P ion can directly shift band gap of semiconductors into the visible region. The energy band gap decreases from 3.2 to 2.0 eV as the doping of mole % of P increases as 1, 3 and 5 mole %. P doping can effectively decrease the recombination rate of photogenerated charges in TiO2.

1. Introduction

Heterogeneous photocatalysis has shown distinctive advantages in degradation $[1]$. TiO₂ semiconductor is extensively used as raw materials of ointment, paint, sunscreen, and toothpaste [2- 4]. Semiconductor photocatalysis has attracted wide attention in the field of water splitting, CO² reduction and pollution degradation [5-12] after the Honda and Fujishima's discovery of water photolysis on TiO₂ [13]. Now days, TiO₂ is still regarded as one of the most significant photocatalysts due to its long-term stability, low cost and nontoxicity [14-15]. However, the exploitation of visible light is limited due to the large band gap. The band gap of anatase $TiO₂$ is 3.2 eV and it is in the UV region. Moreover, the high resistance and high carrier recombination rate are also the disadvantages of $TiO₂$ photocatalyst [15,16]. To enhance the lifetime of photogenerated electron–hole pairs and decrease the band gap, various methods and techniques have been developed such as metal ion and nonmetal ion doping[17,18], with several foreign ions[19, 20], hybridization with carbon materials[21,22], co-doping, and surface sensitization by noble metal [23]. Nonmetal ion doping has made great success in the field of modifying photocatalyst such as N $[24 - 27]$ and S $[28-30]$. The doping of nonmetal ion can directly shift band gap of semiconductors, resulting improved visible excited photocatalytic efficiency [31- 33]. Comparing with other nonmetal elements, phosphorus has distinctive advantages on improving photocatalytic efficiency. P doping can effectively decrease the recombination rate of photogenerated charges in TiO₂ [34,35]. On the other hand, it has been reported by many researchers that moderate oxygen vacancies on photocatalyst can result in the formation of unpaired electrons and avoid the electron hole recombination [36, 37].

2 Materials and method

2.1 Materials

Nanocrystalline P doped $TiO₂$ was synthesized by using the sol-gel technique. In this work Analytical grade titanium(IV)tetraisopropoxide (TTIP) (TiOCH(CH₃)₂₄ 97% Sigma Aldrich), Orthophosphoric acid (H₃PO₄), Oleic acid (C₁₈H₃₄O₂), ammonia (NH₃) and absolute ethyl alcohol (C_2H_5OH) were used for the synthesis.

2.2 Synthesis of P doped TiO² nanoparticles

Optimum compositions (0.0 mole %, 1 mole %, 3 mole % and 5 mole %) of P doped TiO² nanoparticles were prepared by sol-gel method at room temperature.

 5ml Oleic acid was taken in a 250 mL round-bottom flask. The content was stirred at 120° C for 10 min. followed by the addition of 10 mL TTIP and 200 mL distilled water (DW); white precipitate of titanium hydroxide was formed. The content was stirred at room temperature for 1 h. Then, the content was filtered and re-slurred in 200 mL DW and the pH of the solution was adjusted to 10 by using an ammonia solution. After that, the content was stirred at 60° C for 3 h. The stoichiometric quantity of orthophosphoric acid (H_3PO_4) was added into the above solution. The content was again stirred for 3 h at 60° C. Then, the content was filtered and washed with 50 mL DW and 10 mL ethyl alcohol. After that, the residue was dried at 100° C and annealed in air at 500° C for 5 h. After annealing, the residue resulted in the off white colored P doped TiO₂ nanoparticles.

2.3 Characterization

The prepared powder samples were characterized by powder X-ray diffraction technique. XRD data of the samples were collected in the 2 θ range of $10^0 - 90^0$ in step scan mode at a rate of 0.2⁰/min using ULTIMA IV, Rigaku Corporation, Japan diffractometer with source Cu Ka (K α 1 = 1.5406 and K α 1 = 1.5444 Å) radiation. Nicolet iS10, Thermo Scientific, USA Fourier Transform Infrared spectrometer was used to record FTIR spectra of the nanoparticles in the range of 400 cm⁻¹ to 4000 cm⁻¹ with the transmission mode. The surface morphology of samples was investigated by using filed emission Scanning Electron Microscopy (FE-SEM) Hitachi S-4800 system with EDAX analysis was performed to determine the elemental composition of the samples. A JEOL JEM2100F field emission gun-transmission electron microscope (HR-TEM 200kV) operating at 200 kV with resolution (Point: 0.19 nm Line: 0.1 nm) and magnification $(50X - 1.5 X)$ was employed for generating HR-TEM image of the nanoparticles. UV–Visible diffuse reflectance spectra of all the samples were recorded in the range of 200 nm – 800 nm, using an ELICO – SL159 UV–Visible spectrometer.

3 Results and discussion

3.1 X-ray diffraction analysis (XRD)

Figure 1 suggests the phase formation and crystalline structure of bare $TiO₂$ and various concentrations of P doped $TiO₂$ nanoparticles X-ray diffraction analysis was performed on the precursor material at room temperature using Cu-K α radiations (λ =1.5406 Å). Fig. 4.11 shows XRD spectra of all the samples. The X-ray diffraction peaks (101), (004), (200), (105), (211),

(204), (116), (220), and (215) of bare TiO₂ corresponding to diffraction angles at $2\theta = 25.4^{\circ}$, 38.02°, 48.14°, 54.12°, 55.18°, 62.81°, 68.71°, 70.28°, and 75.30° could be attributed to the anatase phase $TiO₂$, respectively (JCPDS 21-1272). No peak phase assigned to P was observed with doping concentration, the crystal structure of doped $TiO₂$ samples shows stability of anatase phase when compared with that of bare $TiO₂$ sample. The average crystallite size of all the samples was calculated from the Full Width at Half Maximum (FWHM) (β) of all major diffraction peaks of anatase, using the Debye-Scherer method [38]. The obtained results of the average crystallite size (D) changed after P doping was tabulated in **Table 1**. The variation of crystallite size with P mole% was shown in **Figure 2** and it is observed that due to P doping crystallite size decreases.

Figure 1: X-ray Diffraction Pattern for bare TiO² and P-doped TiO² nanoparticles

Figure 2: Variation of crystallite size with % of P doped in TiO² nanoparticles

Bare TiO2			1% P			$3\%P$			5 % P		
2θ	β	D(nm)	2θ	β	D (nm)	2θ	β	D(nm)	2θ	β	D(nm)
25.41	0.81	10.03	25.38	0.89	9.14	25.41	1.10	7.38	25.19	2.97	2.74
38.03	1.28	6.58	37.95	1.56	5.39	38.00	1.67	5.03	27.97	1.62	5.07
48.14	0.91	9.53	48.12	0.83	10.52	48.14	1.07	8.16	48.10	1.45	5.99
54.13	0.79	11.34	54.74	1.53	5.86	54.76	1.73	5.19	54.70	2.23	4.02
62.81	1.16	8.01	62.84	0.83	11.26	62.96	1.32	7.05			
Average D		9.10			8.43			6.56			4.45
(nm)											

Table 1: The average crystallite size

3.2 Fourier transform infrared spectroscopy (FTIR)

The FTIR spectra of bare and 1, 3 and 5 mole% P are shown in **Figure 3**. The FTIR of bare and various mole% of TiO₂ shown broad bands at 3240 and 1640 cm^{-1} is corresponding to the -OH stretching and bending vibrations of chemical adsorbed water and hydroxyl groups [39]. As the mole% of P increases, these bands became broader and stronger than that for the bare $TiO₂$ [40]. The P doping is responsible for high adsorption capacity of the TiO₂ due to their large surface area. The absorption bands shown at 1040, 1095, and 1125 cm⁻¹ is attributed to the doped materials, signifying the chemical environment of the P in the $TiO₂$. These bands are corresponding to P-O vibration [41]. The broad peak at 1095 cm⁻¹ is attributed to the v3 vibration of the phosphate ions coordinated with $TiO₂$. The v2 vibration of the phosphate in a bidentate state (associating at surface) is shown band at 1125 cm^{-1} , and the peak at 1040 cm^{-1} is related to Ti-O-P framework vibrations [42]. It means that P perhaps would exist in the surface as bidentate phosphate and Ti-O-P bonds forming in the lattice [43]. The broad adsorption peak present at 800 cm⁻¹ for all materials is assigned to Ti-O-Ti vibration if Ti is in octahedral environment [44].

3.3 Field emission scanning electron microscopy (FESEM)

Morphology of bare TiO₂, 1 mole% and 5 mole % P doped TiO₂ synthesized by using *sol-gel* method and calcined at 500 °C is shown in **Figure 4** (a), (c)and (e) FESEM images shown the surface. It is apparent from these images that the P doped $TiO₂$ were included of nonspherical particles with an average diameter of 5 - 10 nm of its particle size. The size of particles was estimated by measuring the diameter of the particles from Gaussian fitting of Histograms. **Figure 4** (b, d, f) represents the particle size distribution Gaussian fitting of Histograms, and

average particle size is determined. The histogram shows an average size distribution is 8 nm. The average particle size determined from Gaussian fitting is in close concurrence with the particle size calculated from XRD analysis. The P doped $TiO₂$ is compared with the bare $TiO₂$, the diameter and morphology did not change significantly because the amount of P doped on TiO² was very less, so the TiO² doped of P in the SEM image is difficult to observe effectively. The variation of particle size with mole % of P is shown in **Figure 4**

Figure 4: FESEM images of (a) bare TiO2, (c) 1% P doped TiO² and (e) 5% P doped TiO² and corresponding histograms of samples (b), (d) and (f)

3.4 EDAX analysis

The elemental composition of P doped $TiO₂$ spheres with varying amounts of P doping calcined at 500 °C was analyzed using EDAX. EDAX was used to determine the elemental composition of the nanoparticles and the representative patterns are shown in **Figure 5**(a), (b) and (c). These patterns reveal the presence of Ti, P, O elements in the doped samples element. It can be observed that the intensity of the P peak corresponding to emission lines at 2.0 keV (K α 1) increases with increasing P doping by comparing the EDAX spectra of the P doped samples with that of bare TiO₂. The presence of a 0.3, 0.4, 0.5, 0.6, 4.5 and 4.9 keV (L α 1) peaks are attributed to the Ti and O. In **Figure 5** (a), only Ti and O elements were detected in bare $TiO₂$ powder, while in **Figure 5** (b) and (c), P was detected in addition to Ti and O elements. P doped TiO₂, indicating that P was successfully doped on the $TiO₂$. Elemental composition of Ti, O and P in weight% and atomic% shown in **Table 2**.

Figure 5: Elemental composition of (a) bare TiO2, (b) 1% P, and (c) 5% P doped TiO² nanoparticles and the representative patterns of EDAX

Table 2: Elemental composition in weight% and atomic%

3.5 High resolution transmission electron microscopy (HR-TEM)

Figure 6 : (a, b, c, d) shows the TEM, High-resolution TEM (HR-TEM), Histogram of particle size and selected area electron diffraction (SAED) pattern for bare TiO²

HR-TEM technique was used to analyze the surface morphology and particle structure of bare and P doped $TiO₂$ nanoparticles. The representative HR-TEM images of the bare $TiO₂$ are shown **Figure 6** (a) to (d) shows the TEM, high-resolution TEM (HR-TEM), histogram of particle size and selected area electron diffraction (SAED) pattern. These images confirm that the bare $TiO₂$ particles show a spherical-like structure with a size distribution from 9 to 11 nm. While morphological structure of P doped $TiO₂$ shown in **Figure 7** (a) to (d) confirm that the 5 mole % P doped TiO₂ nanoparticles are elongated-spherical in shape with an average size of 5-7 nm. The nanoparticles are clearly observed in all the images, which shown the high degree of crystallinity. The particle size of 5 mole % P doped $TiO₂$ nanoparticles are less than that of bare TiO² NPs, which is similar with the crystallite size obtained from XRD. Further observation by SAED **Figure 6** (d) and in **Figure 7** (d) confirmed that the nanoparticles are well crystalline in nature with tetragonal anatase structure.

Figure 7 : (a, b, c, d) shows the TEM, High-resolution TEM (HR-TEM), Histogram of particle size and selected area electron diffraction (SAED) pattern for 5 mole% P doped TiO²

3.6 UV–Visible diffuse reflectance spectroscopy

Figure 8: UV-Visible DRS (absorption mode) spectra of bare TiO² and 1, 3 and 5 mole % P doped TiO² NPs

UV-Visible diffused reflectance spectroscopy (DRS) was used for the investigation of the optical properties and band gap energies of the synthesized materials. **Figure 8** shows the UV-Visible DRS (absorption mode) spectra of bare TiO² NPs shows the optical absorption edge in the wavelength region between 250 to 390 nm [45], while compared to P doped $TiO₂(1, 3$ and 5 mole % P) shows the shifting its absorption edge from UV to visible region, indicates doping of P in the TiO₂ lattice. As the mole% of P increases in the TiO₂, the visible absorption edge shifted towards higher absorbance as well as higher wavelength region; this is reflected through decrease in the optical band gap. The P-doped $TiO₂$ samples shown stronger absorption edge in the range of wavelengths from 400 to 550 nm compared to bare $TiO₂$ [46]. In their electronic structure calculations of phosphorus cation-doped anatase $TiO₂$ found the band gap narrowing because of the substitution of pentavalent phosphorus (P^{5+}) into Ti⁴⁺ sites [47].

The optical energy band gap of the \overrightarrow{P} doped TiO₂ was determined by plotting the Tauc plot $(\alpha h\upsilon)^2$ as a function of photon energy (hv) and fixed from the intercept tangent to the x-axis [45] and presented in **Figure 9**.

The energy band gap decreases from 3.2 to 2.0 eV as the doping of mole % of P increases as 1, 3 and 5 mole %. The doping of phosphorous in the $TiO₂$ lattice, the band gap is lowered to 2.37 eV for 1 mole% P, further reduced to 2.25 eV for 3 mole% P and 2.0 eV for 5 mole% P doping in TiO2. This absorption enhancement with decrease in band gap in the visible region can be assigned to the formation of dopant level nearer the valance band [48- 50]. The decrease in the optical energy band gap of the P doped $TiO₂$ NPs, leads to increase in optical absorption.

Figure 9: Tauc plot (αhʋ) ² as a function of photon energy (hʋ) of TiO² and P doped TiO² NPs with 1, 3, and 5 mole % P

4. Conclusion

The experimental results suggest that, the P doped $TiO₂$ influenced the structural, morphological, and optical properties significantly. UV-DRS studies investigate that the doping of P ion can directly shift band gap of semiconductors into the visible region. The energy band gap decreases from 3.2 to 2.0 eV as the doping of mole % of P increases as 1, 3 and 5 mole %. P doping can effectively decrease the recombination rate of photogenerated charges in $TiO₂$. FTIR spectra were investigated, as the mole% of P increases; these bands became broader and stronger than that for the bare $TiO₂$. The P doping is responsible for high adsorption capacity of the $TiO₂$ due to their large surface area. The absorption bands shown at 1040, 1095, and 1125 cm^{-1} is attributed to the doped materials, signifying the chemical environment of the P in the $TiO₂$. These bands are corresponding to P-O vibration. The broad peak at 1095 cm^{-1} is attributed to the ν3 vibration of the phosphate ions coordinated with TiO2. The ν2 vibration of the phosphate in a bidentate state (associating at surface) is shown band at 1125 cm^{-1} , and the peak at 1040 cm^{-1} is related to Ti-O-P framework vibrations. It means that P perhaps would exist in the surface as bidentate phosphate and Ti-O-P bonds forming in the lattice. Morphology of bare and various mole % P doped TiO₂ analyzed by using FESEM images. It is apparent from these images that the P doped TiO₂ were included of non-spherical particles with an average diameter of $5 - 10$ nm of its particle size. XRD data were investigate, no peak phase assigned to P was observed with doping concentration, the crystal structure of doped $TiO₂$ samples shows stability of anatase phase when compared with that of bare $TiO₂$ sample. EDAX studies revealed that the intensity of the P peak corresponding to emission lines at 2.0 keV(K α 1) increases with increasing P doping by comparing the EDAX spectra of the P doped samples with that of bare $TiO₂$. The presence of a 0.3, 0.4, 0.5, 0.6, 4.5 and 4.9 keV (L α 1) peaks are attributed to the Ti and O. HRTEM images were investigate the morphology of P doped $TiO₂$ nanoparticles are elongated-spherical in shape with an average size of 5-7 nm. The particle size of 5 mole $%$ P doped TiO₂ nanoparticles are less than that of bare $TiO₂ NPs$, which is similar with the crystallite size obtained from XRD.

Acknowledgment

Author deeply acknowledges to C-MET, Pune, Principal, Ramkrishna Paramhansa Mahavidyalaya, Osmanabad and Shri Chhatrapati Shivaji Mahavidyalaya, Omerga for providing the research facilities.

References

- [1] Sturini M, Speltini A, Maraschi F, et al. Photolytic and photocatalytic degradation of fluoroquinolones in untreated river water under natural sunlight [J]. Applied Catalysis B: Environmental, 2012, 119: 32-39.
- [2] Pfaff G, Reynders P. Angle-dependent optical effects deriving from submicron structures of films and pigments [J]. Chemical reviews, 1999, 99 (7): 1963-1982.
- [3] Yuan S, Chen W, Hu S. Fabrication of TiO2 nanoparticles/surfactant polymer complex film on glassy carbon electrode and its application to sensing trace dopamine [J]. Materials Science & Engineering C, 2005, 25 (4): 479-485.
- [4] Wu H B, Hng H H, Lou X W. Direct synthesis of anatase $TiO₂$ nanowires with enhanced photocatalytic activity [J]. Advanced Materials, 2012, 24 (19): 2567-2571.
- [5] Peng Y, Le Z, Wen M, et al. Mesoporous single-crystal-like TiO2 mesocages threaded with carbon nanotubes for high-performance electrochemical energy storage [J]. Nano Energy, 2017, 35: 44-51.
- [6] Zhao G, Pang H, Liu G, et al. Co-porphyrin/Carbon nitride hybrids for improved photocatalytic CO² reduction under visible light [J]. Applied Catalysis B: Environmental, 2016, 200: 141-149.
- [7] Bian Z, Zhu J, Li H. Solvothermal alcoholysis synthesis of hierarchical TiO₂ with enhanced activity in environmental and energy photocatalysis [J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2016, 28: 72-86.
- [8] Zhao, Zhao, Xiaoyan, et al. Effect of defects on photocatalytic activity of rutile TiO₂ nanorods [J]. Nano Research, 2015, 8 (12): 4061-4071.
- [9] Zhu Y, Wang Y, Ling Q, et al. Enhancement of full-spectrum photocatalytic activity over BiPO⁴ /Bi2WO⁶ composites [J]. Applied Catalysis B: Environmental, 2016, 200: 222- 229.
- [10] Xiao S, Zhu W, Liu P, et al. CNTs threaded (001) exposed TiO² with high activity in photocatalytic NO oxidation [J]. Nanoscale, 2015, 8 (5): 2899-2907.
- [11] Zhang H, Wei J, Dong J, et al. Efficient Visible Light Driven Carbon Dioxide Reduction by a Single Atom Implanted Metal – Organic Framework [J]. Angewandte Chemie, 2016, 128 (46): 14522-14526.
- [12] Zhu W, Liu P, Xiao S, et al. Microwave-assisted synthesis of Ag-doped MOFs-like organotitanium polymer with high activity in visible-light driven photocatalytic NO oxidization [J]. Applied Catalysis B: Environmental, 2015, 172: 46-51.
- [13] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238 (5358): 37-38.
- [14] Chen X, Mao S S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications [J]. Cheminform, 2007, 107 (7): 2891-2959.
- [15] Wang Z, Lou X W. TiO₂ nanocages: fast synthesis, interior functionalization and improved lithium storage properties [J]. Advanced Materials, 2012, 24 (30): 4124-4129.
- [16] Murphy A B, Barnes P R F, Randeniya L K, et al. Efficiency of solar water splitting using semiconductor electrodes [J]. International Journal of Hydrogen Energy, 2006, 31 (14): 1999-2017.
- [17] Xu M, Da P, Wu H, et al. Controlled Sn-Doping in TiO₂ Nanowire Photoanodes with Enhanced Photoelectrochemical Conversion [J]. Nano Letters, 2012, 12 (3): 1503-1508.
- [18] Wang Y, Zhang Y Y, Tang J, et al. Simultaneous etching and doping of $TiO₂$ nanowire arrays for enhanced photoelectrochemical performance [J]. Acs Nano, 2013, 7 (10): 9375-9383.
- [19] Hu C C, Hsu T C, Kao L H. One-Step Cohydrothermal Synthesis of Nitrogen-Doped Titanium Oxide Nanotubes with Enhanced Visible Light Photocatalytic Activity [J]. International Journal of Photoenergy, 2012, 2012 (51): 1302-1312.
- [20] Sun H, Zhou G, Liu S, et al. Visible light responsive titania photocatalysts codoped by nitrogen and metal (Fe, Ni, Ag, or Pt) for remediation of aqueous pollutants [J]. Chemical Engineering Journal, 2013, 231 (9): 18-25.
- [21] Shin S H, Chun H H, Jo W K. Enhanced Photocatalytic Efficiency of N-F-Co Embedded Titania under Visible Light Exposure for Removal of Indoor-Level Pollutants [J]. Materials, 2014, 8 (1): 31-41.
- [22] Hamadanian M, Jabbari V, Shamshiri M, et al. Preparation of novel heteronanostructures and high efficient visible light-active photocatalyst using incorporation of CNT as an electron-transfer channel into the support $TiO₂$ and PbS [J]. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44 (5): 748-757.
- [23] Ding S, Chen J S, Luan D, et al. Graphene-supported anatase TiO₂ nanosheets for fast lithium storage [J]. Chemical Communications, 2011, 47 (20): 5780-5782.
- [24] Yan J, Wu G, Dai W, et al. Synthetic Design of Gold Nanoparticles on Anatase TiO₂ {001} for Enhanced Visible Light Harvesting [J]. Acs Sustainable Chem Eng, 2014, 2 (8): 1940-1946.
- [25] Alcadipani R. Hydrothermal Synthesis of Nitrogen-Doped Titanium Dioxide and Evaluation of Its Visible Light Photocatalytic Activity [J]. International Journal of Photoenergy, 2012, 2012 (2): 2058-2069.
- [26] Jia T, Fu F, Zhao J, et al. Sonochemical Synthesis, Characterization, and Photocatalytic Activity of N-Doped TiO₂ Nanocrystals with Mesoporous Structure [J]. Materials Technology, 2014, 2014 (6): 372-376.
- [27] Fang J, Wang F, Qian K, et al. Bifunctional N-Doped Mesoporous TiO² Photocatalysts [J]. Journal of Physical Chemistry C, 2014, 112 (46): 18150-18156.
- [28] Peres A, Ron A. N-TiO2 Photocatalysts highly active under visible irradiation for NO_X abatement and 2-propanol oxidation [J]. Catalysis Today, 2013, 206 (1): 19-25.
- [29] Shin S W, Lee J Y, Ahn K S, et al. Visible Light Absorbing $TiO₂$ Nanotube Arrays by Sulfur Treatment for Photoelectrochemical Water Splitting [J]. Journal of Physical Chemistry C, 2015, 119 (24): 13375-13383.
- [30] Ma X Z, Jin B, Wang H Y, et al. S-TiO₂ composite cathode materials for lithium/sulfur batteries [J]. Journal of Electroanalytical Chemistry, 2015, 736: 127-131.
- [31] Han C, Pelaez M, Likodimos V, et al. Innovative visible light-activated sulfur doped TiO² films for water treatment [J]. Applied Catalysis B: Environmental, 2011, 107 (1-2): 77-87.
- [32] Khan M, Gul S R, Li J, et al. Variations in the structural, electronic and optical properties of N-doped TiO² with increasing N doping concentration [J]. Modern Physics Letters B, 2015, 29 (8): 1550022.
- [33] Liu Y, Wu Y, Zhou Y, et al. Direct Synthesis of Urchin-Like N-doped TiO₂ Microstructures with Enhanced Photocatalytic Properties [J]. Transactions of the Indian Ceramic Society, 2016, 75 (3): 155-160.
- [34] Huang Z, Feng J, Pan W. Electronic Structure and Optical Properties of N-Doped Anatase TiO₂ by First-Principles Calculations [J]. Rare Metal Materials $\&$ Engineering, 2011, 40 (22): 475-477.
- [35] Kuo C Y, Wu C H, Wu J T, et al. Synthesis and characterization of a phosphorus-doped $TiO₂$ immobilized bed for the photodegradation of bisphenol A under UV and sunlight irradiation [J]. Reaction Kinetics, Mechanisms and Catalysis, 2015, 114 (2): 753-766.
- [36] Elghniji K, Soro J, Rossignol S, et al. A simple route for the preparation of P-modified TiO² : Effect of phosphorus on thermal stability and photocatalytic activity [J]. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43 (1): 132-139.
- [37] Pan X, Yang M Q, Fu X, et al. Defective $TiO₂$ with oxygen vacancies: synthesis, properties and photocatalytic applications [J]. Nanoscale, 2013, 5 (9): 3601-3614
- [38] Li X, Song J, Liu Y, et al. Controlling oxygen vacancies and properties of ZnO [J]. Current Applied Physics, 2014, 14 (3): 521-527.
- [39] L. Wang, Y. Yamauchi, Chemistry of Materials, 21 (2009) 3562.
- [40] Lertpaitoonpan W, Ong S, Moorman T (2009) Effect of organic carbon and pH on soil sorption of sulfamethazine. Chemosphere 76:558– 564. <https://doi.org/10.1016/j.chemosphere.2009.02.066>
- [41] Xia Y, Jiang Y, Li F (2014) Effect of calcined atmosphere on the photocatalytic activity of P-doped TiO2. Appl Surf Sci 289:306–315. <https://doi.org/10.1016/j.apsusc.2013.10.157>
- [42] Elghniji K, Soro J, Rossignol S, Ksibi M (2012) A simple route for the preparation of Pmodified TiO2: effect of phosphorus on thermal stability and photocatalytic activity. J Taiwan Inst Chem Eng 43: 132–139.<https://doi.org/10.1016/j.jtice.2011.06.011>
- [43] Körösi L, Papp S, Bertóti I, Dékány I (2007) Surface and bulk composition, structure, and photocatalytic activity of phosphate-modified TiO2. Chem Mater 19:4811–4819. <https://doi.org/10.1021/cm070692r>
- [44] Yu J, Zhang L, Zheng Z, Zhao J (2003) Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chem Mater 15:2280– 2286.<https://doi.org/10.1021/cm0340781>
- [45] G. Cheng, M. S. Akhtar, O.-B. Yang, F. J. Stadler, *ACS Appl. Mater. Interfaces* 2013, *5*, 6635-6642.
- [46] Y. Zhou, Y. Liu, P. Liu, W. Zhang, M. Xing, J. Zhang, A facile approach to further improve the substitution of nitrogen into reduced $TiO₂$ with an enhanced photocatalytic activity, Appl. Catal. B Environ. 170e171 (2015) 66e73, http:// dx.doi.org/10.1016/j.apcatb.2015.01.036.
- [47] Zheng, R. Y.; Lin, L.; Xie, J. L.; Zhu, Y. X.; Xie, Y. C. J. Phys. Chem. C 2008, 112, 15502
- [48] W. Choi, A. Termin, M.R. Hoffmann, J. Phys. Chem. 98 (1994) 13669.
- [49] T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, J. Phys. Chem. Solids 63 (2002) 1909.
- [50] J. Ben Naceur, R. Mechiakh, F. Bousbih, R. Chtourou, Appl. Surf. Sci. 257 (2011) 10699.